-
آرشیو :
نسخه تابستان 1404
-
کد پذیرش :
12426
-
موضوع :
سایر شاخه ها
-
نویسنده/گان :
| محسن نصیری
-
زبان :
فارسی
-
نوع مقاله :
پژوهشی
-
چکیده مقاله به فارسی :
حسگری فشرده در شبکه حسگر بی سیم اخیراً به منظور فشردهسازی/ بازیابی سیگنال و جمعآوری داده مورد استفاده قرارگرفته است. دلیل محبوبیت روش فوق در شبکه حسگر بی سیم را میتوان مربوط به چالشهای این تکنولوژی دانست، زیرا تئوری حسگری فشرده با نرخ اندک نمونهبرداری خود سبب کاهش توان مصرفی و کاهش نرخ انتقال داده میشود که این امر موجب کاهش انرژی مصرفی نودها درنتیجه افزایش طول عمر شبکه میشود، این تئوری یک الگوی جدید نمونهبرداری است که نمونههای سیگنال در یک روش بسیار کارآمدتر از تئوری نایکوئیست ایجاد میشوند، حسگری فشرده بهتازگی به لطف استفاده از تنکی سیگنال بسیار موردتوجه قرا گفته است. در سالهای اخیر حل مسائل مربوط به ابعاد- بالا با بهره بردن از ساختارهای ابعاد- کوچک پیشرفت چشمگیر داشته است. تنکی را میتوان سادهترین مدل برای ساختار با ابعاد- کوچک دانست، تنکی بر این پایه استوار است که اشیا (میتواند سیگنال باشد) موردعلاقه را میتوان بهصورت یک ترکیب خطیاز تعداد کوچکی از توابع ابتدایی نمایش داد که فرض شده است آنها مطلق به مجموعه بزرگتر یا یک فرهنگ لغت یا احتمالاً تابعی بزرگتر میباشند.
-
لیست منابع :
[1] [1] Donoho, David L., Martin Vetterli, Ronald A. DeVore, and Ingrid Daubechies. "Data compression and harmonic analysis."Information Theory, IEEE Transactions on 44, no. 6 (1998): 2435-2476.
[2] [2] J. Claerbout and F.Muir, “Robust modeling with erratic data: Geo-physics,” Geophysics, vol. 38, no. 5, pp. 826–844, Oct. 1973.
[3] [3] B. Kashin, “The widths of certain finite dimensional sets and classes of smooth functions,” Math. USSR Izv., vol. 41, no. 2, pp. 334–351, 1977.
[4] [4] E. Gluskin, “Norms of random matrices and widths of finite-dimensional sets,” Math.USSR-Sbornik, vol. 48, p. 173, 1984.
[5] [5] F. Santosa and W. Symes, “Linear inversion of band-limited reflection seismograms,” SIAM J. Scientific Statistical Comput., vol. 7, p. 1307, 1986.
[6] [6] L. Rudin, S. Osher, and E. Fatemi, “Nonlinear total variation based noise removal algorithms,” Physica D: Nonlinear Phenomena, vol. 60, no. 1–4, pp. 259–268, 1992.
[7] [7] S. Mallat and Z. Zhang, “Matching pursuits with time-frequency dictionaries,” IEEE Trans. Signal Process., vol. 41, no. 12, pp. 3397–3415, 1993.
[8] [8] Qaisar, Saad, Rana Muhammad Bilal, Waheed Iqbal, Muqaddas Naureen, and Sungyoung Lee. "Compressive sensing: From theory to applications, a survey."Communications and Networks, Journal of 15, no. 5 (2013): 443-456.
[9] [9] Gorodnitsky, Irina F., and Bhaskar D. Rao. "Sparse signal reconstruction from limited data using FOCUSS: A re-weighted minimum norm algorithm." Signal Processing, IEEE Transactions on 45, no. 3 (1997): 600-616.
[10] [10] Chen, Scott Shaobing, David L. Donoho, and Michael A. Saunders. "Atomic decomposition by basis pursuit."SIAM journal on scientific computing 20, no. 1 (1998): 33-61.
[11] [11] Bruckstein, Alfred M., David L. Donoho, and Michael Elad. "From sparse solutions of systems of equations to sparse modeling of signals and images."SIAM review 51, no. 1 (2009): 34-81.
[12] [12] E. Cand`es, “The restricted isometry property and its implications for compressed sensing,” Comptes Rendus Mathematique, vol. 346, no. 9–10, pp. 589–592, 2008.
[13] [13] Z. Chen and J. Dongarra, “Condition numbers of Gaussian random matrices,” SIAM J. Matrix Analysis Appl., vol. 27, no. 3, pp. 603–620, 2006.
[14] [14] Eldar, Yonina C., and Gitta Kutyniok, eds. Compressed sensing: theory and applications. Cambridge University Press, 2012.
[15] [15] E. Cand`es, J. Romberg, and T. Tao, “Stable signal recovery from incomplete and inaccurate measurements,” Commun.Pure Applied Math., vol. 59, no. 8, pp. 1207–1223, 2006.
[16] [16] J. Tropp and A. Gilbert, “Signal recovery from random measurements via orthogonal matching pursuit,” IEEE Trans. Inf. Theory, vol. 53, no. 12, p. 4655, 2007.
[17] [17] T. Blumensath and M. Davies, “Iterative hard thresholding for compressed sensing,” Applied and Computational Harmonic Analysis, vol. 27,no. 3, pp. 265–274, 2009.
[18] [18] D. Donoho, A. Maleki, and A. Montanari, “Message-passing algorithms for compressed sensing,” Proc. Nat. Academy Sci., vol. 106, no. 45,p. 18914, 2009.
[19] [19] E. Cand`es and B. Recht, “Exact matrix completion via convex optimization,” Foundations Computational Math., vol. 9, no. 6, pp. 717–772, 2009.
[20] [20] S. Chen, D. Donoho, and M. Saunders, “Atomic decomposition by basis pursuit,” SIAM Rev., vol. 43, no. 1, pp. 129–159, 2001.
[21] [21] R. Tibshirani, “Regression shrinkage and selection via the lasso,” J. Royal Statistical Society.Series B (Methodological), pp. 267–288, 1996.
[22] [22] B. Efron, T. Hastie, I. Johnstone, and R. Tibshirani, “Least angle regression,” Annals of statistics, vol. 32, no. 2, pp. 407–451, 2004.
[23] [23] D. Needell and R. Vershynin, “Uniform uncertainty principle and signal recovery via regularized orthogonal matching pursuit,” Foundations computational math., vol. 9, no. 3, pp. 317–334, 2009.
[24] [24] D. Donoho, Y. Tsaig, I. Drori, and J. Starck, “Sparse solution of underdetermined linear equations by stagewise orthogonal matching pursuit,” 2006.
[25] [25] D. Needell and J. Tropp, “CoSaMP: Iterative signal recovery from incomplete and inaccurate samples,” Applied Comput. Harmonic Analysis,vol. 26, no. 3, pp. 301–321, 2009.
[26] [26] E. Liu and V. Temlyakov, “Orthogonal super greedy algorithm and applications in compressed sensing,” IEEE Trans. Inf. Theory, vol. 58, no. 4,pp. 2040–2047, Apr. 2012.
[27] [27] R. Berinde, P. Indyk, and M. Ruzic, “Practical near-optimal sparse recovery in the l1 norm,” in Proc. Allerton Conf. Commun., Control, Comput.,2009, pp. 198–205.
[28] [28] A. Gilbert, M. Strauss, J. Tropp, and R. Vershynin, “One sketch for all: Fast algorithms for compressed sensing,” in Proc. ACMSymp. Theory Comput.,2007, pp. 237–246.
[29] [29] J.Murray and K. Kreutz-Delgado, “An improved FOCUSS-based learning algorithm for solving sparse linear inverse problems,” in Proc. Asilomar Conf. Signals, Syst., Comput., vol. 1, 2001, pp. 347–354.
[30] [30] R. Chartrand and W. Yin, “Iteratively reweighted algorithms for compressive sensing,” in Proc. IEEE ICASSP, 2008.
[31] [31] D. Wipf and B. Rao, “Sparse Bayesian learning for basis selection,” IEEE Trans. Signal Process., vol. 52, no. 8, pp. 2153–2164, 2004.
[32] [32] W. Yin, S. Osher, D. Goldfarb, and J. Darbon, “Bregman iterative algorithms for l1-minimization with applications to compressed sensing,” SIAM J. Imaging Sci., vol. 1, no. 1, pp. 143–168, 2008.
[33] [33] W. Dai and O. Milenkovic, “Subspace pursuit for compressive sensing signal reconstruction,” IEEE Trans. Inf. Theory, vol. 55, no. 5, pp. 2230–2249, 2009.
[34] [34] P. Nagesh et al., “Compressive imaging of color images,” in Proc. IEEE ICASSP, 2009, pp. 1261–1264.
[35] [35] A. Elgammal, D. Harwood, and L. Davis, “Non-parametric model for background subtraction,” Comput.Vision-ECCV, pp. 751–767, 2000.
[36] [36] M. Piccardi, “Background subtraction techniques: A review,” in Proc. IEEE Int. Conf. Syst., Man, Cybernetics, vol. 4, 2004, pp. 3099–3104.
[37] [37] M. Wakin, J. Laska, M. Duarte, D. Baron, S. Sarvotham, D. Takhar, K. Kelly, and R. Baraniuk, “An architecture for compressive imaging,” in Proc.IEEE Int. Conf. Image Process., 2006, pp. 1273–1276.
[38] [38] C. Luo, F.Wu, J. Sun, and C. Chen, “Compressive data gathering for largescale wireless sensor networks,” in Proc. ACM MOBICOM, 2009, pp. 145–156.
[39] [39] Q. Ling and Z. Tian, “Decentralized sparse signal recovery for compressive sleeping wireless sensor networks,” IEEE Trans. Signal Process.,vol.58, no. 7, pp. 3816–3827, 2010.
[40] [40] W. Bajwa, J. Haupt, A. Sayeed, and R. Nowak, “Compressed channel sensing: A new approach to estimating sparse multipath channels,” Proc. IEEE,vol. 98, no. 6, pp. 1058–1076, 2010.
[41] [41] Y. Tachwali, W. Barnes, F. Basma, and H. Refai, “The Feasibility of a fast Fourier sampling technique for wireless microphone detection in IEEE 802.22 air interface,” in Proc. IEEE INFOCOM, 2010, pp. 1–5.
[42] [42] P. Zhang, Z. Hu, R. Qiu, and B. Sadler, “A compressed sensing based ultra-wideband communication system,” in Proc. IEEE ICC, 2009, pp. 1–5.
[43] [43] Y. Zhang, M. Roughan, W. Willinger, and L. Qiu, “Spatio-temporal compressive sensing and internet traffic matrices,” ACM SIGCOMM Comput.Commun.Rev., vol. 39, no. 4, pp. 267–278, 2009.
[44] [44] S. Pudlewski and T. Melodia, “On the performance of compressive video streaming for wireless multimedia sensor networks,” in Proc. IEEE ICC,2010, pp. 1–5.
[45] [45] C. Feng, W. S. Anthea, S. Valaee, and Z. Tan, “Compressive sensing based positioning using RSS of WLAN access points,” in Proc. IEEE INFOCOM,2010, pp. 1–9.
-
کلمات کلیدی به فارسی :
نمونه برداری، شبکه بی سیم، فشردگی، امنیت شبکه
-
چکیده مقاله به انگلیسی :
Compact sensing in wireless sensor networks has recently been used for signal compression/recovery and data collection. The reason for the popularity of the above method in wireless sensor networks can be attributed to the challenges of this technology, because the compact sensing theory with its low sampling rate reduces power consumption and data transfer rate, which reduces the energy consumption of nodes, resulting in an increase in the network lifetime. This theory is a new sampling paradigm in which signal samples are generated in a much more efficient way than the Nyquist theory. Compact sensing has recently gained much attention thanks to the use of signal sparsity. In recent years, solving high-dimensional problems using small-dimensional structures has made significant progress. Sparsity can be considered the simplest model for low-dimensional structures. Sparsity is based on the premise that the objects (which can be signals) of interest can be represented as a linear combination of a small number of elementary functions that are assumed to be absolute to a larger set or dictionary or possibly a larger function.
-
کلمات کلیدی به انگلیسی :
Sampling, Wireless Network, Compression, Network Security
- صفحات : 18-38
-
دانلود فایل
( 570.47 KB )