-
آرشیو :
نسخه پاییز 1404
-
کد پذیرش :
12434
-
موضوع :
سایر شاخه ها
-
نویسنده/گان :
| حسین فاتحی، بهرام آزموده املشی، علی نوروز فروش
-
زبان :
فارسی
-
نوع مقاله :
مروری
-
چکیده مقاله به فارسی :
مقاله حاضر به بررسی، تحلیل نقش سیستمهای مترو: چالشهای ایمنی، عملکرد و مدیریت یکپارچه میپردازد، با توجه به ماهیت کیفی بودن تحقیق برای مطالعه روش تحلیل محتوا انتخاب شد. تحلیل محتوا یکی از مهمترین روشهای تحقیق کیفی است که در پی شناخت اطلاعات به تحلیل آنها میپردازد. شهرنشینی شتابان در کشورهای در حال توسعه، که پیشبینی میشود جمعیت شهری تا سال ۲۰۵۰ به ۵.۵ میلیارد نفر برسد، فشار بیسابقهای بر منابع و محیطزیست وارد کرده و چالشهایی چون گسترش کالبدی بیرویه، ترافیک، آلودگی و الگوهای ناکارآمد کاربری زمین را به وجود آورده است. در این میان، توسعه سیستمهای حملونقل عمومی بهویژه مترو، بهعنوان راهحلی کلیدی برای دستیابی به توسعه پایدار شهری و مدیریت این چالشها شناخته میشود. یافتههای این پژوهش نشان میدهد که مترو با بهبود دسترسی، کاهش هزینههای حملونقل و ترویج توسعه مبتنی بر حملونقل عمومی (TOD)، نه تنها به کاهش تراکم مراکز شهری و بازتوزیع جمعیت و فعالیتهای اقتصادی کمک میکند، بلکه با تشویق تراکم بالاتر و استفاده کارآمد از زمین، بستری برای رشد اقتصادی و شمول اجتماعی فراهم میآورد. با این حال، خود این سیستمها با چالشهای عملیاتی مهمی از جمله ایمنی (مانند حواسپرتی شناختی رانندگان و طراحی محیط ایستگاهها) و ارزیابی عملکرد روبرو هستند. این پژوهش بر لزوم مدیریت یکپارچه و رویکردی همهجانبه شامل به کارگیری روشهای کاربردی برای پایش رانندگان، طراحی محیطی ایمن و فراگیر و تدوین شاخصهای ارزیابی عملکرد جامع برای تضمین کارایی و پایداری سیستم مترو در بلندمدت تأکید مینماید.
-
لیست منابع :
1) Liu, H., Zhou, Y., & Jiang, C. (2025). Classifying metro drivers’ cognitive distractions during manual operations using machine learning and random forest-recursive feature elimination. Scientific Reports, 15, 7564. https://doi.org/10.1038/s41598-025-92248-6
2) Li, N. & Busso, C. Predicting perceived visual and cognitive distractions of drivers with multimodal features. IEEE Trans. Intell. Transp. Syst. 16 (1), 51–65. https://doi.org/10.1109/tits.2014.2324414 (2015).
3) Wu, X., Shi, C. & Yan, L. Driving attention state detection based on GRU-EEGNet. Sensors 24 (16), 5086. h t t p s : / / d o i . o r g / 1 0 . 3 3 9 0 / s 2 4 1 6 5 0 8 6 (2024).
4) Taherisadr, M., Asnani, P., Galster, S. & Dehzangi, O. ECG-Based driver inattention identification during naturalistic driving using Mel-frequency cepstrum 2-D transform and convolutional neural networks. Smart Health. 9–10, 50–61. h t t p s : / / d o i . o r g / 1 0 . 1 0 1 6 / j . s m h l . 2 0 1 8 . 0 7 . 0 2 2 (2018).
5) Han, S. Y., Kim, J. W., Lee, S. W. & Ieee Recognition of pilot’s cognitive states based on combination of physiological signals. In Proceedings of 7th International Winter Conference on Brain-Computer Interface (BCI), Korea Univ, Res Ctr Brain & Artificial Intelligence, Gangwon, South Korea 232–236 (2019).
6) Haddad I. A new tropism of the urban fabric in the face of risk and uncertainty in the developing countries. Eur Modern Stud J. 2024;8(1):106–18. https:// doi. org/ 10. 59573/ emsj. 8(1). 2024. 11.
7) Liu X, Huang Y, Xu X, Li X, Li X, Ciais P, Lin P, Gong K, Ziegler AD, Chen A, Gong P, Chen J, Hu G, Chen Y, Wang S, Wu Q, Huang K, Estes L, Zeng Z. High-spatiotemporal-resolution mapping of global urban change from 1985 to 2015. Nat Sustain. 2020;3(7):564–70. https:// doi. org/ 10. 1038/ s41893- 020- 0521-x.
8) Sharma A, Nikam B, Bagri DS. 2023. Urbanization trends and challenges: a case study in the Asan watershed of Uttarakhand on Urban Growth patterns and sustainable land use planning. https:// doi. org/ 10. 21203/ rs.3. rs- 36608 10/ v1
9) Egidi G, Salvati L, Vinci S. The long way to tipperary: city size and worldwide urban population trends, 1950–2030. Sustain Cities Soc. 2020;60: 102148. https:// doi. org/ 10. 1016/j. scs. 2020. 102148.
10) Al-Mousawi H, Vein Leong L, Al-Jameel H. The influence of ring roads on traffic characteristics in urban cities. BIO Web Conf. 2024;97:00067. https:// doi. org/ 10. 1051/ bioco nf/ 20249 700067.
11) Umoh AA, Ohenhen PE, Chidolue O, Ngozichukwu B, Fafure AV, Ibekwe KI. Incorporating energy efficiency in urban planning: a review of policies and best practices. Eng Sci Technol J. 2024;5(1):83–98. https:// doi. org/ 10. 51594/ estj. v5i1. 729.
12) Zamir KR, Nasri A, Baghaei B, Mahapatra S, Zhang L. Effects of transit-oriented development on trip generation, distribution, and mode share in Washington, D.C., and Baltimore, Maryland. Trans Res Record. 2014;2413(1):45–53. https:// doi. org/ 10. 3141/ 2413- 05.
13) Yu H, Zhu S, Li JV, Wang L. Dynamics of urban sprawl: deciphering the role of land prices and transportation costs in government-led urbanization. J Urban Manage. 2024. https:// doi. org/ 10. 1016/j. jum. 2024. 08. 002.
14) Mann A. A symbiotic relationship. New York: Routledge eBooks; 2022. p. 438–56. https:// doi. org/ 10. 4324/ 97810 03204 749- 30.
15) Shawly H. Evaluating compact city model implementation as a sustainable urban development tool to control Urban Sprawl in the city of Jeddah. Sustainability. 2022;14(20):13218. https:// doi. org/ 10. 3390/ su142 013218.
16) Enwin AD, Ikiriko TD. Balancing urban development: literature on the Nexus between affordable housing and urban Sprawl. Int J Res Rev. 2023;10(12):560–72. https:// doi. org/ 10. 52403/ ijrr. 20231 259.
17) Ding, X., Shi, G., Liu, Z., & Hu, H. (2023). Risk Chain Mining of Hazard Sources in Metro Operation System Safety: A New Method to Mine and Control Risk for Safety Management. Urban Rail Transit, 9(147–178). https://doi.org/10.1007/s40864-023-00192-3 Received 2 December 2022; Revised 2 March 2023; Accepted 15 March 2023; Published online 15 May 2023.
18) Chapman CB, Cooper DF (1987) Risk analysis for large project: models method and cases. Wiley, Hoboken, pp 544–549
19) Kangari R (1995) Risk management perceptions and trends of US construction. J Constr Eng Manag 121(4):422–429
20) He L (2018) Application of hazard identification and assessment grading optimization method for metro lines. Safety 39(8):8–11
21) Yang QM (2018) Research on safety risk identification and analy sis of large railway passenger station system [D]. Beijing Jiaotong University, Beijing
22) Liu X et al (2012) Analysis of causes of major train derailment and their effect on accident rates. Transp Res Rec 2289(1):154–163
23) Ceccato, V., Besenecker, U., Ariel, B., Höglund, M., Näsman, P., & Eizadi, H. (2025). Assessing safety perceptions and lighting conditions in a metro station. Journal of Experimental Criminology. Accepted: 26 June 2025. https://doi.org/10.1007/s11292-025-09683-8
24) Augustin, S. (2021). How lighting choices can affect your mood. People, places, and things. Psychology Today.
25) Keller, H. (2017). The integral rules of good lighting: An expert shares his advice on achieving the perfect light. Architectural Digest. https:// www. archi tectu raldi gest. com/ story/ rules- for- perfe ct- light ing- mista kes- to- avoid
26) Matsubayashi, T., Sawada, Y., & Ueda, M. (2014). Does the installation of blue Lights on train plat forms shift suicide to another station?: Evidence from Japan. Journal of Affective Disorders, 169, 57–60.
27) Bullough, J. D., Donnell, E. T., & Rea, M. S. (2013). To illuminate or not to illuminate: Roadway lighting as it affects traffic safety at intersections. Accident Analysis & Prevention, 53, 65–77. https:// doi. org/ 10. 1016/j. aap. 2012. 12. 029
28) Chu X, Fielding GJ, Lamar BW (1992) Measuring transit performance using data envelopment analysis. Transportation Research Part A: Policy and Practice 26(3):223–230
29) Wen Y, Leng J, Shen X, Han G, Sun L, Yu F (2020) Environmental and health effects of ventilation in subway stations: a literature review. Int J Environmental Research Public Health 17(3):1084
30) Hobbs FD (2016) Traffic planning and engineering: Pergamon international library of science, technology, engineering and social studies. Elsevier
31) Jarboui S, Forget P, Boujelbene Y (2012) Public road transport efficiency: a literature review via the classification scheme. Public Transport 4(2):101–128
32) Monast K, Stanfield C (2019) An analysis of success plans and performance measures for rural transit systems in North Carolina. Transp. Res. Record. 2673:97–105
-
کلمات کلیدی به فارسی :
مترو، شهرنشینی، حمل و نقل، ایمنی مترو، مدیریت
-
چکیده مقاله به انگلیسی :
This article examines and analyzes the role of metro systems: safety, performance, and integrated management challenges. Given the qualitative nature of the research, content analysis was chosen for the study. Content analysis is one of the most important qualitative research methods that analyzes information after understanding it. Rapid urbanization in developing countries, where the urban population is expected to reach 5.5 billion by 2050, has put unprecedented pressure on resources and the environment, creating challenges such as excessive physical expansion, traffic, pollution, and inefficient land use patterns. Meanwhile, the development of public transport systems, especially metros, is recognized as a key solution to achieve sustainable urban development and manage these challenges. The findings of this study show that metros, by improving accessibility, reducing transportation costs, and promoting transit-oriented development (TOD), not only help reduce the density of urban centers and redistribute population and economic activities, but also provide a platform for economic growth and social inclusion by encouraging higher density and efficient land use. However, these systems themselves face important operational challenges, including safety (such as cognitive distraction of drivers and station environment design) and performance evaluation. This study emphasizes the need for integrated management and a comprehensive approach, including the use of practical methods for driver monitoring, safe and inclusive environmental design, and the development of comprehensive performance evaluation indicators to ensure the efficiency and sustainability of the metro system in the long term.
-
کلمات کلیدی به انگلیسی :
Metro, Urbanization, Transportation, Metro Safety, Management
- صفحات : 1-9
-
دانلود فایل
( 359.10 KB )