-
آرشیو :
نسخه بهار1404
-
کد پذیرش :
12423
-
موضوع :
سایر شاخه های مهندسی
-
نویسنده/گان :
| امیرحسین محمودی
-
زبان :
فارسی
-
نوع مقاله :
پژوهشی
-
چکیده مقاله به فارسی :
مشکل آلودگی محیط زیست در حال افزایش در زندگی انسان و اکوسیستم میباشد. بهخصوص، آلودگی آب به دلیل تخلیه پساب از صنایع به سرعت رو به افزایش است. تنها راه کشف منابع آب جدید، استفاده مجدد از پساب تصفیه شده میباشد. چندین تکنولوژی ترمیمی وجود دارند که استفاده مجدد از پساب احیا شده را تسهیل میکنند. فلزات سنگین نظیر ,Zn, Cu, Pb, Ni , Cd Hg و غیره به دلیل سمی بودن منجر به ایجاد مشکلات متعدد زیست محیطی میگردند. این فلزات سمی در معرض انسان و محیط زیست قرار میگیرند، تجمع یونها رخ داده که منجر به خطرات جدی سلامتی و زیستمحیطی میشوند. بنابراین این مسئله یک مشکل جدی در محیط زیست میباشد. با توجه به این مشکل، اهمیت توسعه تکنولوژی برای حذف فلزات سنگین بیش از پیش نمایان شده است. در این پژوهش با سنتز سبز نانوذرات اکسیدآهن/ گالیک اسید سعی در حذف نانوذرات پلاتین داشتیم که با توجه به نتایج تستهای UV , SEM , VSM , FT-IRو XRD نتایج قابل قبولی از این سنتز به دست آمد و تا بیش از 87 درصد از پلاتین را جذب نمودیم.
-
لیست منابع :
[1] M. Elgallal, L. Fletcher, B. Evans, Assessment of potential risks associated with chemicals in wastewater used for irrigation in arid and semiarid zones: a review, Agric. Water Manag. 177 (2016) 419–431.
[2] M.J. Van Oosten, A. Maggio, Functional biology of halophytes in the phytoremediation of heavy metal contaminated soils, Environ. Exp. Bot. 111 (2015) 135–146.
[3] A. Calzadilla, K. Rehdanz, R.S.J. Tol, Water scarcity and the impact of improved irrigation management: a computable general equilibrium analysis, Agric. Econ. 42 (2011) 305–323.
[4] P.F. Tee, M.O. Abdullah, I.A.W. Tan, N.K.A. Rashid, M.A.M. Amin, C. Nolasco- Hipolito, K. Bujang, Review on hybrid energy systems for wastewater treatment and bio-energy production, Renew. Sustain. Energy Rev. 54 (2016) 235–246.
[5] Y. Luo, W. Guo, H.H. Ngo, L.D. Nghiem, F.I. Hai, J. Zhang, S. Liang, X.C. Wang, A review on the occurrence of micropollutants in the aquatic environment and their fate and removal during wastewater treatment, Sci. Total Environ. 473–474 (2014) 619–641.
[6] S.O. Ganiyu, E.D. van Hullebusch, M. Cretin, G. Esposito, M.A. Oturan, Coupling of membrane filtration and advanced oxidation processes for removal of pharmaceutical residues: a critical review, Sep. Purif. Technol. 156 (2015) 891–914.
[7] M.B. Ahmed, J.L. Zhou, H.H. Ngo, W. Guo, N.S. Thomaidis, J. Xuc, Progress in the biological and chemical treatment technologies for emerging contaminant removal from wastewater: a critical review, J. Hazard. Mater. 323 (2017) 274–298.
[8] A.L. Goncalves, J.C.M. Pires, M. Simoes, A review on the use of microalgal consortia for wastewater treatment, Algal Res. (2016), http://dx.doi.org/10.1016/ j.algal.2016.11.008 (Article in press).
[9] N. Renuka, A. Sood, S.K. Ratha, R. Prasanna, A.S. Ahluwalia, Evaluation of microalgal consortia for treatment of primary treated sewage effluent and biomass production, J. Appl. Phycol. 25 (2013) 1529–.7351
[10] E.M. Carstea, J. Bridgeman, A. Baker, D.M. Reynolds, Fluorescence spectroscopy for wastewater monitoring: a review, Water Res. 95 (2016) 205–.912
[11] W.S. Wan Ngah, L.C. Teong, M.A.K.M. Hanafiah, Adsorption of dyes and heavy metal ions by chitosan composites: a review, Carbohydr. Polym. 83 (2011) 1446–1456.
[12] G.M. Quero, D. Cassin, M. Botter, L. Perini, G.M. Luna, Patterns of benthic bacterial diversity in coastal areas contaminated by heavy metals, polycyclic aromatic hydrocarbons (PAHs) and polychlorinated biphenyls (PCBs), Front. Microbiol. 6 (2015) 1–15.
[13] A. Finizio, G. Azimonti, S. Villa, Occurrence of pesticides in surface water bodies: a critical analysis of the Italian national pesticide survey programs, J. Environ. Monit. 13 (2011) 49–57.
[14] V.K. Gupta, Suhas, Application of low-cost adsorbents for dye removal – A review, J. Environ. Manage. 90 (2009) 2313–2342.
[15] Y. Gong, X. Zhao, Z. Cai, S.E. O’Reilly, X. Hao, D. Zhao, A review of oil, dispersed oil and sediment interactions in the aquatic environment: influence on the fate, transport and remediation of oil spills, Mar. Pollut. Bull. 79 (2014) 16–33.
[16] R.F. Johnson, T.G. Manjreker, J.E. Halligan, Removal of oil from water surfaces by sorption on unstructured fibers, Environ. Sci. Technol. 7 (1973) 439–443.
[17] P. Xu, G. Ming, D. Lian, C. Ling, S. Hu, M. Hua, Science of the Total Environment Use of iron oxide nanomaterials in wastewater treatment: a review, Sci. Total Environ. 424 (2012) 1–10.
[18] J. Lee, B. Dhar, Bio-processing of solid wastes and secondary resources for metal extraction −A review, Waste Manag. 32 (2012) 3–18.
[19] N.K. Srivastava, C.B. Majumder, Novel biofiltration methods for the treatment of heavy metals from industrial wastewater, J. Hazard. Mater. 151 (2008) 1–8.
[20] F.R. Peligro, I. Pavlovic, R. Rojas, C. Barriga, Removal of heavy metals from simulated wastewater by in situ formation of layered double hydroxides, Chem. Eng. J. 306 (2016) 1035–1040.
[21] N.P. Raval, P.U. Shah, N.K. Shah, Adsorptive removal of nickel(II) ions from aqueous environment: a review, J. Environ. Manage. 179 (2016) 1–20.
[22] W. Han, F. Fu, Z. Cheng, B. Tang, S. Wu, Studies on the optimum conditions using acid- washed zero-valent iron/aluminum mixtures in permeable reactive barriers for the removal of different heavy metal ions from wastewater, J. Hazard. Mater. 302 (2016) 437–446.
[23] P. Koedrith, H.L. Kim, J. Il Weon, Y.R. Seo, Toxicogenomic approaches for understanding molecular mechanisms of heavy metal mutagenicity and carcinogenicity, Int. J. Hyg. Environ. Health. 216 (2013) 587–.895
[24] P.C. Madu, G.D. Akpaiyo, I. Ikoku, Biosorption of Cr3+ Pb2+, and Cd2+ ions from aqueous solution using modified and unmodified millet chaff, J. Chem. Pharm. Res. 3 (2011) 467–477.
[25] O. Krystofova, V. Shestivska, M. Galiova, K. Novotny, J. Kaiser, J. Zehnalek, P. Babula, R. Opatrilova, V. Adam, R. Kizek, Sunflower plants as bioindicators of environmental pollution with lead (II) ions, Sensors 9 (2009) 5040–.8505
[26] B. Dhir, P. Sharmila, P.P. Saradhi, Potential of aquatic macrophytes for removing contaminants from the environment, Crit. Rev. Environ. Sci. Technol. 39 (2009) 754–781.
[27] V.M. Nurchi, G. Crisponi, I. Villaescusa, Chemical equilibria in wastewaters during toxic metal ion removal by agricultural biomass, Coord. Chem. Rev. 254 (2010) 2181–2192.
[28] G.S. Simate, N. Maledi, A. Ochieng, S. Ndlovu, J. Zhang, L.F. Walubita, Coal-based adsorbents for water and wastewater treatment, J. Environ. Chem. Eng. 4 (2016) 2291–2312.
[29] H. Ali, E. Khan, M.A. Sajad, Phytoremediation of heavy metals-concepts and applications, Chemosphere 91 (2013) 869–881.
[30] A. Bhatnagar, M. Sillanpaa, Applications of chitin- and chitosan-derivatives for the detoxification of water and wastewater − a short review, Adv. Colloid Interface Sci. 152 (2009) 26– 38.
[31] S. Demim, N. Drouiche, A. Aouabed, T. Benayad, O. Dendene-Badache, S. Semsari, nickel. Cadmium, Assessment of the physiological effects and heavy metal removal using a response surface approach by L. gibba, Ecol. Eng. 61 (2013) 426–435.
[32] M. Filipi, Mechanisms of cadmium induced genomic instability: mutat, Res. − Fundam. Mol. Mech. Mutagen. 733 (2012) 69–77.
[33] M.A. Atieh, O.Y. Bakather, B.S. Tawabini, A.A. Bukhari, M. Khaled, M. Alharthi, M. Fettouhi, F.A. Abuilaiwi, Removal of chromium (III) from water by using modified and nonmodified carbon nanotubes, J. Nanomater. 2010 (2010) 232–378.
[34] E. Vaiopoulou, P. Gikas, Effects of chromium on activated sludge and on the performance of wastewater treatment plants: a review, Water Res. 46 (2012) 549–570.
[35] P. Miretzky, A.F. Cirelli, Cr(VI) and Cr(III) removal from aqueous solution by raw and modified lignocellulosic materials: a review, J. Hazard. Mater. 180 (2010) 1–19.
[36] J. Hu, C. Chen, X. Zhu, X. Wang, Removal of chromium from aqueous solution by using oxidized multiwalled carbon nanotubes, J. Hazard. Mater. 162 (2009) 1542–1550.
[37] S. Yang, J. Li, D. Shao, J. Hu, X. Wang, Adsorption of Ni(II) on oxidized multiwalled carbon nanotubes: effect of contact time, pH, foreign ions and PAA, J. Hazard. Mater. 166 (2009) 109–116.
[38] I. Mobasherpour, E. Salahi, M. Ebrahimi, Removal of divalent nickel cations from aqueous solution by multi-walled carbon nano tubes: equilibrium and kinetic processes, Res. Chem. Intermed. 38 (2012) 2205–.2222
[39] S. Malamis, E. Katsou, A review on zinc and nickel adsorption on natural and modified zeolite bentonite and vermiculite: examination of process parameters, kinetics and isotherms, J. Hazard. Mater. 252–253 (2013) 428–.164
[40] J. Acharya, J.N. Sahu, C.R. Mohanty, B.C. Meikap, Removal of lead(II) from wastewater by activated carbon developed from Tamarind wood by zinc chloride activation, Chem. Eng. J. 149 (2009) 249–262.
[41] X. Qu, P.J.J. Alvarez, Q. Li, Applications of nanotechnology in water and wastewater treatment, Water Res. 47 (2013) 3931–3946.
[42] M.A.P. Cechinel, S.M.A.G. Ulson De Souza, A.A. Ulson De Souza, Study of lead (II) adsorption onto activated carbon originating from cow bone, J. Clean. Prod. 65 (2013) 342–349.
[43] S.T. Akar, T. Akar, Z. Kaynak, B. Anilan, A. Cabuk, Ozge Tabak, T.A. Demir, T. Gedikbey, Removal of copper(II) ions from synthetic solution and real wastewater by the combined action of dried Trametes versicolor cells and montmorillonite, Hydrometallurgy 97 (2009) 98–104.
[44] Y. Ding, S.Z. Shen, H. Sun, K. Sun, F. Liu, Synthesis of L-glutathione-capped-ZnSe quantum dots for the sensitive and selective determination of copper ion in aqueous solutions, Sens. Actuators B Chem. 203 (2014) 35–43.
[45] M.R. Awual, M. Ismael, M.A. Khaleque, T. Yaita, Ultra-trace copper(II) detection and removal from wastewater using novel meso-adsorbent, J. Ind. Eng. Chem. 20 (2014) 2332–2340.
[46] D. Mehta, S. Mazumdar, S.K. Singh, Magnetic adsorbents for the treatment of water/wastewater — a review, J.Water Process Eng. 7 (2015) 244–265.
[47] J. Gao, F. Liu, P. Ling, J. Lei, L. Li, C. Li, A. Li, High efficient removal of Cu(II) by a chelating resin from strong acidic solutions: complex formation and DFT certification, Chem. Eng. J. 222 (2013) 240–247.
[48] M.R. Awual, T. Yaita, S.A. El-Safty, H. Shiwaku, S. Suzuki, Y. Okamoto, Copper(II) ions capturing from water using ligand modified a new type mesoporous adsorbent, Chem. Eng. J. 221 (2013) 322–330.
[49] W.W. Tang, G.M. Zeng, J.L. Gong, J. Liang, P. Xu, C. Zhang, B. Bin Huang, Impact of humic/fulvic acid on the removal of heavy metals from aqueous solutions using nanomaterials: a review, Sci. Total Environ. 468–469 (2014) 1014–.7201
[50] Y.T. Zhou, C. Branford-White, H.L. Nie, L.M. Zhu, Removal of Cu2+ from aqueous solution by chitosan-coated magnetic nanoparticles modified with α-ketoglutaric acid, J. Colloids Interface Sci. 330 (2009) 29–.73
[51] D.J. Ennigrou, M. Ben Sik Ali, M. Dhahbi, Copper and Zinc removal from aqueous solutions by polyacrylic acid assisted-ultrafiltration, Desalination 343 (2014) 82–87.
[52] B. An, Q. Liang, D. Zhao, Removal of arsenic(V) from spent ion exchange brine using a new class of starch-bridged magnetite nanoparticles, Water Res. 45 (2011) 1961–1972.
[53] M.A. Barakat, New trends in removing heavy metals from industrial wastewater, Arab. J. Chem. 4 (2011) 361–377.
[54] S.A. Abo-Farha, A.Y. Abdel-Aal, I.A. Ashour, S.E. Garamon, Removal of some heavy metal cations by synthetic resin purolite C100, J. Hazard. Mater. 169 (2009) 190–194.
[55] T. Motsi, N.A. Rowson, M.J.H. Simmons, Adsorption of heavy metals from acid mine drainage by natural zeolite, Int. J. Miner. Process. 92 (2009) 42–48.
[56] H. Figueiredo, C. Quintelas, Tailored zeolites for the removal of metal oxyanions: overcoming intrinsic limitations of zeolites, J. Hazard. Mater. 274 (2014) 287–299.
[57] B. Alyuz, S. Veli, Kinetics and equilibrium studies for the removal of nickel and zinc from aqueous solutions by ion exchange resins, J. Hazard. Mater. 167 (2009) 482–488.
[58] H.S. Jamil, I.H.A. El-Maksoud, S.T.E. Wakeel, Application of zeolite prepared from Egyptian kaolin for the removal of heavy metals: i. Optimum conditions, Desalination 258 (2010) 34–40.
[59] F. Pepe, B. de Gennaro, P. Aprea, D. Caputo, Natural zeolites for heavy metals removal from aqueous solutions: modeling of the fixed bed Ba2+/Na+ ionexchange process using a mixed phillipsite/chabazite-rich tuff, Chem. Eng. J. 219 (2013) 37–42.
[60] R.D. Ambashta, M. Sillanpaa, Water purification using magnetic assistance: a review, J. Hazard. Mater. 180 (2010) 38–49.
[61] O.N. Kononova, G.L. Bryuzgina, O.V. Apchitaeva, Y.S. Kononov, Ion exchange recovery of chromium(VI) and manganese(II) from aqueous solutions, Arab. J. Chem. (2015), http://dx.doi.org/10.1016/j.arabjc.2015.05.021 (Article in press).
[62] M.R. Mahmoud, N.K. Lazaridis, K.A. Matis, Study of flotation conditions for cadmium(II) removal from aqueous solutions, Process Saf. Environ. Prot. (2014), http://dx.doi.org/10.1016/j.psep.2014.06.012 (Article in press).
[63] M. Karhu, T. Leiviska, J. Tanskanen, Enhanced DAF in breaking up oil-in-water emulsions, Sep. Purif. Technol. 122 (2014) 231–.142
[64] H. Al-Zoubi, K.A. Ibrahim, K.A. Abu-Sbeih, Removal of heavy metals from wastewater by economical polymeric collectors using dissolved air flotation process, J.Water Process Eng. 8 (2015) 19–.72
[65] J. Amaral Filho, A. Azevedo, R. Etchepare, J. Rubio, Removal of sulfate ions by dissolved air flotation (DAF) following precipitation and flocculation, Int. J. Miner. Process. 149 (2016) 1–8.
[66] F.S. Hoseinian, M. Irannajad, A.J. Nooshabadi, Ion flotation for removal of Ni(II) and Zn(II) ions from wastewaters, Int. J. Miner. Process. (2015), http://dx.doi. org/10.1016/j.minpro.2015.07.006 (Article in press).
[67] M.H. Salmani, M. Davoodi, M.H. Ehrampoush, M.T. Ghaneian, M.H. Fallahzadah, Removal of cadmium(II) from simulated wastewater by ion flotation technique, Iranian J. Environ. Health Sci. Eng. 10 (2013) 16.
[68] Z. Liu, F.M. Doyle, Ion flotation of Co2+, Ni2+, and Cu2+ using dodecyldiethylenetriamine (Ddien), Langmuir 25 (2009) 8927–8934.
[69] X.Z. Yuan, Y.T. Meng, G.M. Zeng, Y.Y. Fang, J.G. Shi, Evaluation of tea-derived biosurfactant
on removing heavy metal ions from dilute wastewater by ion flotation, Colloids Surf. A Physicochem. Eng. Asp. 317 (2008) 256–261.
[70] A. Salmani Abyaneh, M.H. Fazaelipoor, Evaluation of rhamnolipid (RL) as a biosurfactant for the removal of chromium from aqueous solutions by precipitate flotation, J. Environ. Manage. 165 (2016) 184–187.
[71] S. Lyu, W. Chen, W. Zhang, Y. Fan, W. Jiao, Wastewater reclamation and reuse in China: opportunities and challenges, J. Environ. Sci. (China) (2015), http://dx. doi.org/10.1016/j.jes.2015.11.012 (Article in press).
[72] M.A. Barakat, E. Schmidt, Polymer-enhanced ultrafiltration process for heavy metals removal from industrial wastewater, Desalination 256 (2010) 90–93.
[73] N.S.A. Mutamim, Z.Z. Noor, M.A.A. Hassan, G. Olsson, Application of membrane bioreactor technology in treating high strength industrial wastewater: a performance review, Desalination 305 (2012) 1–11.
[74] N.H. an Tran, H.H. ao Ngo, T. Urase, K.Y. ew, H. Gin, A critical review on characterization strategies of organic matter for wastewater and water treatment processes, Bioresour. Technol. (2015), http://dx.doi.org/10.1016/j.biortech. 2015.06.091 (Article in press).
[75] C.C. Molgora, A.M. Domínguez, E.M. Avila, P. Drogui, G. Buelna, Removal of arsenic from drinking water: a comparative study between electrocoagulationmicrofiltration and chemical coagulation-microfiltration processes, Sep. Purif. Technol. 118 (2013) 645–651.
[76] R. Moreno-tovar, E. Terrés, J.R. Rangel-mendez, Oxidation and EDX. elemental mapping characterization of an ordered mesoporous carbon: pb(II) and Cd(II) removal, Appl. Surf. Sci. 303 (2014) 373–.083
-
کلمات کلیدی به فارسی :
سنتز سبز، نانو ذره، نانوذرات مغناطیسی، اکسید آهن / گالیک اسید، پلاتین، فلزات سنگین.
-
چکیده مقاله به انگلیسی :
The problem of environmental pollution is increasing in human life and ecosystem. In particular, water pollution is increasing rapidly due to the discharge of wastewater from industries. The only way to discover new water resources is to reuse treated wastewater. There are several remediation technologies that facilitate the reuse of reclaimed wastewater. Heavy metals such as Zn, Cu, Pb, Ni, Cd, Hg, etc., due to their toxicity, lead to various environmental problems. Heavy metals such as Zn, Cu, Pb, Ni, Cd, Hg, etc., due to their toxicity, lead to various environmental problems. These toxic metals are exposed to humans and the environment, and the accumulation of ions occurs, which leads to serious health and environmental hazards. Therefore, this is a serious environmental problem Given this problem, the importance of developing technology for removing heavy metals has become more apparent than ever. In this study, we tried to remove platinum nanoparticles by green synthesis of iron oxide/gallic acid nanoparticles. According to the results of UV, SEM, VSM, FT-IR, and XRD tests, acceptable results were obtained from this synthesis and we absorbed more than 87% of platinum.
-
کلمات کلیدی به انگلیسی :
Green synthesis, nanoparticles, magnetic nanoparticles, iron oxide/gallic acid, platinum, heavy metals
- صفحات : 33-49
-
دانلود فایل
( 797.60 KB )