-
آرشیو :
نسخه بهار1404
-
کد پذیرش :
12421
-
موضوع :
موضوعی تعریف نشده!
-
نویسنده/گان :
| سعیده نادری
-
زبان :
فارسی
-
نوع مقاله :
پژوهشی
-
چکیده مقاله به فارسی :
در دنیای پیچیده و همیشه در حال تغییر امروز، نگرانیها در مورد کمبود دادههای کافی با نگرانیها در مورد دادههای بیش از حد برای مدیریت زنجیره تامین (SCM) جایگزین شده است. (حجم دادههای تولید شده از تمام بخشهای زنجیره تأمین، ماهیت تحلیل SCM را تغییر داده است. با افزایش حجم دادهها، کارایی و اثربخشی روشهای سنتی کاهش یافته است. محدودیتهای این روشها در تجزیه و تحلیل و تفسیر حجم زیادی از دادهها، محققان را بر آن داشته تا روشهایی تولید کنند که توانایی بالایی در تجزیه و تحلیل و تفسیر کلان دادهها دارند. شناختهشدهترین تکنیکهای هوش مصنوعی (AI) با توسعه یک چارچوب مفهومی، مشارکت تکنیکهای ML در انتخاب و تقسیمبندی تامینکنندگان، پیشبینی ریسکهای زنجیره تامین، و تخمین تقاضا و فروش، تولید، مدیریت موجودی، حملونقل و توزیع، توسعه پایدار (SD) و اقتصاد دایرهای (CE) و محدودیتها را مورد بحث قرار میدهد. جهتهای تحقیقاتی آتی داده شده است.
-
لیست منابع :
1) Z. Dai, F. Aqlan, K. Gao, and Y. Zhou, “A two-phase method for multi-echelon location-routing problems in supply chains,” Expert Systems with Applications, vol. 115, pp. 618– 634, 2019.
2) S. C. Koh, S. Saad, and S. Arunachalam, “Competing in the 21st century supply chain through supply chain management and enterprise resource planning integration,” andInternational Journal of Physical Distribution and Logistics Management, vol. 36, no. 6, pp. 455–465, 2006.
3) S. Sadeghi, N. Rasouli, and G. Jandaghi, “Identifying and prioritizing contributing factors in supply chain competitiveness by using PLS-BWM techniques (case study: payam shoes company),” World Scientific News, vol. 49, no. 2, pp. 117–143, 2016.
4) D. M. Lambert, M. C. Cooper, and J. D. Pagh, “Supply chain management: implementation issues and research opportunities,” @e International Journal of Logistics Management, vol. 9, no. 2, pp. 1–20, 1998.
5) S. S. Darvazeh, I. R. Vanani, and F. M. Musolu, “Big data analytics and its applications in supply chain management,” in New Trends in the Use of Artificial Intelligence for the Industry 4.0, IntechOpen, London, UK, 2020.
6) S. Tiwari, H. M. Wee, and Y. Daryanto, “Big data analytics in supply chain management between 2010 and 2016: insights to industries,” Computers and Industrial Engineering, vol. 115, pp. 319–330, 2018.
7) B. Biggio and F. Roli, “Wild patterns: ten years after the rise of adversarial machine learning,” Pattern Recognition, vol. 84, pp. 317–331, 2018.
8) F. M. Musolu, S. Sadeghi Darvazeh, and I. Raeesi Vanani, “Deep learning and its applications in medical imaging,” in Internet of @ings for Healthcare Technologies, pp. 137–153, Springer, Singapore, 2021.
9) S. Piramuthu, “Machine learning for dynamic multi-product supply chain formation,” Expert Systems with Applications, vol. 29, no. 4, pp. 985–990, 2005.
10) I. M. Cavalcante, E. M. Frazzon, F. A. Forcellini, and D. Ivanov, “A supervised machine learning approach to datadriven simulation of resilient supplier selection in digital manufacturing,” International Journal of Information Management, vol. 49, pp. 86–97, 2019.
11) Y. Zhu, C. Xie, G.-J. Wang, and X.-G. Yan, “’Predicting China’s SME credit risk in supply chain finance based on machine learning methods,” Entropy, vol. 18, no. 5, p. 195, 2016.
12) P. Priore, B. Ponte, R. Rosillo, and D. de la Fuente, “Applying machine learning to the dynamic selection of replenishment policies in fast-changing supply chain environments,” International Journal of Production Research, vol. 57, no. 11, pp. 3663–3677, 2019.
13) G. Baryannis, S. Dani, and G. Antoniou, “Predicting supply chain risks using machine learning: the trade-off between performance and interpretability,” Future Generation Computer Systems, vol. 101, pp. 993–1004, 2019.
14) C. Bai, J. Rezaei, and J. Sarkis, “Multicriteria green supplier segmentation,” IEEE Transactions on Engineering Management, vol. 64, no. 4, pp. 515–528, 2017.
15) A. Dey, “Machine learning algorithms: a review,” International Journal of Computer Science and Information Technologies, vol. 7, no. 3, pp. 1174–1179, 2016.
16) M. Bowles, Machine Learning in Python: Essential Techniques for Predictive Analysis, John Wiley and Sons, Hoboken, NJ, USA, 2015.
17) R. Carbonneau, K. Laframboise, and R. Vahidov, “Application of machine learning techniques for supply chain demand forecasting,” European Journal of Operational Research, vol. 184, no. 3, pp. 1140–1154, 2008.
18) A. Ning, H. Lau, Y. Zhao, and T. T. Wong, “Fulfillment of retailer demand by using the MDL-optimal neural network prediction and decision policy,” IEEE Transactions on Industrial Informatics, vol. 5, no. 4, pp. 495–506, 2009.
19) Y. Pan, R. Pavur, and T. Pohlen, “Revisiting the effects of forecasting method selection and information sharing under volatile demand in SCM applications,” IEEE Transactions on Engineering Management, vol. 63, no. 4, pp. 377–389, 2016.
20) M. Maghrebi, C. Sammut, and S. T. Waller, “Feasibility study of automatically performing the concrete delivery dispatching through machine learning techniques,” Engineering, Construction and Architectural Management, vol. 22, no. 5, pp. 573–590, 2015.
21) S. Mercier and I. Uysal, “Neural network models for predicting perishable food temperatures along the supply chain,” Biosystems Engineering, vol. 171, pp. 91–100, 2018.
22) S. Shervais, T. T. Shannon, and G. G. Lendaris, “Intelligent supply chain management using adaptive critic learning,” IEEE Transactions on Systems, Man, and Cybernetics - Part A: Systems and Humans, vol. 33, no. 2, pp. 235–244, 2003.
23) W. W. C. Chung, K. C. M. Wong, and P. T. K. Soon, “An ANN-based DSS system for quality assurance in production network,” Journal of Manufacturing Technology Management, vol. 18, no. 7, pp. 836–857, 2007.
24) C. Liu, T. Shu, S. Chen, S. Wang, K. K. Lai, and L. Gan, “An improved grey neural network model for predicting transportation disruptions,” Expert Systems with Applications, vol. 45, pp. 331–340, 2016.
25) H. Wu, G. Evans, and K.-H. Bae, “Production control in a complex production system using approximate dynamic programming,” International Journal of Production Research, vol. 54, no. 8, pp. 2419–2432, 2016.
26) A. T. Gumus, A. F. Guneri, and F. Ulengin, “A new methodology for multi-echelon inventory management in stochastic and neuro-fuzzy environments,” International Journal of Production Economics, vol. 128, no. 1, pp. 248–260, 2010.
27) X. Guo, Z. Yuan, and B. Tian, “Supplier selection based on hierarchical potential support vector machine,” Expert Systems with Applications, vol. 36, no. 3, pp. 6978–6985, 2009.
28) A. Valluri and D. Croson, “Agent learning in supplier selection models,” Decision Support Systems, vol. 39, no. 2, pp. 219–240, 2005.
29) W. Jiang and J. Liu, “Inventory financing with overconfident supplier based on supply chain contract,” Mathematical Problems in Engineering, vol. 2018, Article ID 5054387, 12 pages, 2018.
30) S. Erevelles and T. H. Stevenson, “Enhancing the business-tobusiness supply chain: insights from partitioning the supplyside,” Industrial Marketing Management, vol. 35, no. 4, pp. 481–492, 2006.
31) S. B. Kotsiantis, I. D. Zaharakis, and P. E. Pintelas, “Machine learning: a review of classification and combining techniques,” Artificial Intelligence Review, vol. 26, no. 3, pp. 159–190, 2006.
32) D. Lowd and P. Domingos, “Naive Bayes models for probability estimation,” in Proceedings of the 22nd International Conference on Machine Learning, pp. 529–536, Germany, August 2005.
33) A. Karatzoglou, D. Meyer, and K. Hornik, “Support vector machines in R,” Journal of Statistical Software, vol. 15, no. 9, pp. 1–28, 2006.
34) P. Harrington, Machine Learning in Action, Manning Publications Co, Shelter Island, NY, USA, 2012.
35) S. Shalev-Shwartz, Y. Singer, N. Srebro, and A. Cotter, “Pegasos: primal estimated sub-gradient solver for SVM,” Mathematical Programming, vol. 127, no. 1, pp. 3–30, 2011.
36) Z.-H. Zhou, “When semi-supervised learning meets ensemble learning,” in Proceedings of the International Workshop on Multiple Classifier Systems, pp. 529–538, Springer, Reykjavik, Iceland, June 2009.
37) A. Lemmens and C. Croux, “Bagging and boosting classification trees to predict churn,” Journal of Marketing Research, vol. 43, no. 2, pp. 276–286, 2006.
38) M. Bertolini, D. Mezzogori, M. Neroni, and F. Zammori, “Machine learning for industrial applications: a comprehensive literature review,” Expert Systems with Applications, vol. 175, Article ID 114820, 2021.
39) Q. Pang, T. Yang, M. Li, and Y. Shen, “A fuzzy-grey multicriteria decision making approach for green supplier selection in low-carbon supply chain,” Mathematical Problems in Engineering, vol. 2017, Article ID 9653261, 9 pages, 2017.
40) G. A. Levow, “Characterizing and recognizing spoken corrections in human-computer dialogue,” in Proceedings of the 36th Annual Meeting of the Association for Computational Linguistics and 17th International Conference on Computational Linguistics, vol. 1, pp. 736–742, Quebec, Canada, August 1998.
41) M. K. Markey, G. D. Tourassi, and C. E. Floyd, “Decision tree classification of proteins identified by mass spectrometry of blood serum samples from people with and without lung cancer,” Proteomics, vol. 3, no. 9, pp. 1678-1679, 2003.
42) B. Zmazek, L. Todorovski, S. Dˇzeroski, J. Vaupotiˇc, and I. Kobal, “Application of decision trees to the analysis of soil radon data for earthquake prediction,” Applied Radiation and Isotopes, vol. 58, no. 6, pp. 697–706, 2003.
43) S. Hochreiter and K. Obermayer, “Support vector machines for dyadic data,” Neural Computation, vol. 18, no. 6, pp. 1472–1510, 2006.
44) J. Rezaei, M. Kadzi´nski, C. Vana, and L. Tavasszy, “Embedding carbon impact assessment in multi-criteria supplier segmentation using ELECTRE TRI-rC,” Annals of Operations Research, pp. 1–23, 2017.
45) J. Rezaei and R. Ortt, “Multi-criteria supplier segmentation using a fuzzy preference relations based AHP,” European Journal of Operational Research, vol. 225, no. 1, pp. 75–84, 2013.
46) J. Rezaei and R. Ortt, “A multi-variable approach to supplier segmentation,” International Journal of Production Research, vol. 50, no. 16, pp. 4593–4611, 2012.
47) J. Rezaei, J. Wang, and L. Tavasszy, “Linking supplier development to supplier segmentation using Best Worst Method,” Expert Systems with Applications, vol. 42, no. 23, pp. 9152–9164, 2015.
48) M. Segura and C. Maroto, “A multiple criteria supplier segmentation using outranking and value function methods,” Expert Systems with Applications, vol. 69, pp. 87–100, 2017.
49) J. Rezaei and H. Fallah Lajimi, “Segmenting supplies and suppliers: bringing together the purchasing portfolio matrix and the supplier potential matrix,” International Journal of Logistics Research and Applications, vol. 22, pp. 1–18, 2018.
50) S. V. Parkouhi, A. S. Ghadikolaei, and H. F. Lajimi, “Resilient supplier selection and segmentation in grey environment,” Journal of Cleaner Production, vol. 207, pp. 1123–1137, 2019.
51) G. Baryannis, S. Dani, S. Validi, and G. Antoniou, “Decision support systems and artificial intelligence in supply chain risk management,” in Revisiting Supply Chain Risk, pp. 53–71, Springer, Cham, Switzerland, 2019.
52) A. Bruzzone and A. Orsoni, “AI and simulation-based techniques for the assessment of supply chain logistic performance,” in Proceedings of the 36th Annual Simulation Symposium, pp. 154–164, IEEE, Florida, FL, USA, March 2003.
53) K. Zhao and X. Yu, “A case based reasoning approach on supplier selection in petroleum enterprises,” Expert Systems with Applications, vol. 38, no. 6, pp. 6839–6847, 2011.
54) G. Baryannis, S. Validi, S. Dani, and G. Antoniou, “Supply chain risk management and artificial intelligence: state of the art and future research directions,” International Journal of Production Research, vol. 57, no. 7, pp. 2179–2202, 2019.
55) J. Luo, X. Zhang, and X. Jiang, “Multisources risk management in a supply chain under option contracts,” Mathematical Problems in Engineering, vol. 2019, Article ID 7482584, 12 pages, 2019.
56) S. Prasanna Venkatesan and S. Kumanan, “Supply chain risk prioritisation using a hybrid AHP and PROMETHEE approach,” International Journal of Services and Operations Management, vol. 13, no. 1, pp. 19–41, 2012.
57) R. Rostamzadeh, M. K. Ghorabaee, K. Govindan, A. Esmaeili et al., “Evaluation of sustainable supply chain risk management using an integrated fuzzy TOPSIS- CRITIC approach,” Journal of Cleaner Production, vol. 175, pp. 651–669, 2018.
58) M. Abdel-Basset and R. Mohamed, “A novel plithogenic TOPSIS- CRITIC model for sustainable supply chain risk management,” Journal of Cleaner Production, vol. 247, Article ID 119586, 2020.
59) Y. H. Lee, P. Golinska-Dawson, and J. Z. Wu, “Mathematical models for supply chain management,” Mathematical Problems in Engineering, vol. 2016, Article ID 6167290, 4 pages, 2016.
60) S. S. Darvazeh, M. Amiri, and F. M. Mooseloo, “Artificial intelligence and its application in data-driven optimization,” in @e Open Access Book, Data Mining, IntechOpen, London, UK, 2021.
61) R. Toorajipour, V. Sohrabpour, A. Nazarpour, P. Oghazi, and M. Fischl, “Artificial intelligence in supply chain management: a systematic literature review,” Journal of Business Research, vol. 122, pp. 502–517, 2021.
62) H. Chen, Y. Zhu, K. Hu, and X. Li, “Virtual enterprise risk management using artificial intelligence,” Mathematical Problems in Engineering, vol. 2010, Article ID 572404, 20 pages, 2010.
63) Y. Fan, L. Heilig, and S. Voß, “Supply chain risk management in the era of big data,” in Design, User Experience, and Usability: Design Discourse, pp. 283–294, Springer, Cham, Switzerland, 2015.
64) M. He, H. Ji, Q. Wang, C. Ren, and R. Lougee, “Big data fueled process management of supply risks: sensing, prediction, evaluation and mitigation,” in Proceedings of the Winter Simulation Conference 2014, pp. 1005–1013, IEEE, Savannah, GA, USA, December 2014.
65) D. Zage, K. Glass, and R. Colbaugh, “Improving supply chain security using big data,” in Proceedings of the 2013 IEEE International Conference on Intelligence and Security Informatics, pp. 254–259, IEEE, Seattle, WA, USA, June 2013.
66) S. Ye, Z. Xiao, and G. Zhu, “Identification of supply chain disruptions with economic performance of firms using multicategory support vector machines,” International Journal of Production Research, vol. 53, no. 10, pp. 3086–3103, 2015.
67) W. Yan, J. He, and A. J. C. Trappey, “Risk-aware supply chain intelligence: AI-enabled supply chain and logistics management considering risk mitigation,” Advanced Engineering Informatics, vol. 42, Article ID 100976, 2019.
68) L. Malviya, P. Chittora, P. Chakrabarti, R. S. Vyas, and S. Poddar, “Backorder prediction in the supply chain using machine learning,” Materials Today: Proceedings, 2021.
69) S. S. Kamble, A. Gunasekaran, V. Kumar, A. Belhadi, and C. Foropon, “A machine learning based approach for predicting blockchain adoption in supply chain,” Technological Forecasting and Social Change, vol. 163, Article ID 120465, 2021.
70) S.-S. Leu and C.-M. Chang, “Bayesian-network-based safety risk assessment for steel construction projects,” Accident Analysis and Prevention, vol. 54, pp. 122–133, 2013.
71) L. Zhang, X. Wu, M. J. Skibniewski, J. Zhong, and Y. Lu, “Bayesian-network-based safety risk analysis in construction projects,” Reliability Engineering and System Safety, vol. 131, pp. 29–39, 2014.
72) D. Ni, Z. Xiao, and M. K. Lim, “A systematic review of the research trends of machine learning in supply chain management,” International Journal of Machine Learning and Cybernetics, pp. 1–20, 2019.
73) S. (omassey, “Sales forecasts in clothing industry: the key success factor of the supply chain management,” International Journal of Production Economics, vol. 128, no. 2, pp. 470–483, 2010.
74) S. G. Timme and C. Williams-Timme, “(e real cost of holding inventory,” Supply Chain Management Review, vol. 7, no. 4, pp. 30–37, 2003.
75) E. B. Tirkolaee, A. Goli, A. Faridnia, M. Soltani, and G.-W. Weber, “Multi-objective optimization for the reliable pollution-routing problem with cross-dock selection using Pareto-based algorithms,” Journal of Cleaner Production, vol. 276, Article ID 122927, 2020.
76) M. Alinaghian, E. B. Tirkolaee, Z. K. Dezaki, S. R. Hejazi, and W. Ding, “An augmented Tabu search algorithm for the green inventory-routing problem with time windows,” Swarm and Evolutionary Computation, vol. 60, Article ID 100802, 2021.
77) E. B. Tirkolaee and N. S. Aydın, “A sustainable medical waste collection and transportation model for pandemics,” Waste Management and Research, Article ID 0734242X211000437, 2021.
78) E. B. Tirkolaee, P. Abbasian, and G.-W. Weber, “Sustainable fuzzy multi-trip location-routing problem for medical waste management during the COVID-19 outbreak,” Science of the Total Environment, vol. 756, Article ID 143607, 2021.
79) M. Yousefi Nejad Attari, A. Ebadi Torkayesh, B. Malmir, and E. Neyshabouri Jami, “Robust possibilistic programming for joint order batching and picker routing problem in warehouse management,” International Journal of Production Research, pp. 1–19, 2021.
80) N. Furian, M. O’Sullivan, C. Walker, and E. Çela, “A machine learning-based branch and price algorithm for a sampled vehicle routing problem,” OR Spectrum, pp. 1–40, 2021.
81) G. ´ Cirovi´c, D. Pamuˇcar, and D. Boˇzani´c, “Green logistic vehicle routing problem: routing light delivery vehicles in urban areas using a neuro-fuzzy model,” Expert Systems with Applications, vol. 41, no. 9, pp. 4245–4258, 2014.
82) M.-K. Chen, T.-W. Tai, and T.-Y. Hung, “Component selection system for green supply chain,” Expert Systems with Applications, vol. 39, no. 5, pp. 5687–5701, 2012.
83) H. R. Vandchali, S. Cahoon, and S.-L. Chen, “Creating a sustainable supply chain network by adopting relationship management strategies,” Journal of Business-To-Business Marketing, vol. 27, no. 2, pp. 125–149, 2020.
84) H. R. Vandchali, S. Cahoon, and S.-L. Chen, “(e impact of supply chain network structure on relationship management strategies: an empirical investigation of sustainability practices in retailers,” Sustainable Production and Consumption, vol. 28, pp. 281–299, 2021.
85) H. R. Vandchali, S. Cahoon, and S. L. Chen, “(e impact of power on the depth of sustainability collaboration in the supply chain network for Australian food retailers,” International Journal of Procurement Management, vol. 14, no. 2, pp. 165–184, 2021.
86) D. Wang and Y. Zhang, “Implications for sustainability in supply chain management and the circular economy using machine learning model,” Information Systems and E-Business Management, pp. 1–13, 2020.
87) P. Wang, “On defining artificial intelligence,” Journal of Artificial General Intelligence, vol. 10, no. 2, pp. 1–37, 2019.
88) D. Nagar, S. Raghav, A. Bhardwaj, R. Kumar, P. L. Singh, and R. Sindhwani, “Machine learning: best way to sustain the supply chain in the era of industry 4.0,” Materials Today: Proceedings, 2021.
89) R. Sharma, S. S. Kamble, A. Gunasekaran, V. Kumar, and A. Kumar, “A systematic literature review on machine learning applications for sustainable agriculture supply chain performance,” Computers and Operations Research, vol. 119, Article ID 104926, 2020.
90) B. T. Hazen, I. Russo, I. Confente, and D. Pellathy, “Supply chain management for circular economy: conceptual framework and research agenda,” @e International Journal of Logistics Management, vol. 32, no. 2, pp. 510–537, 2021.
91) H. Wilts, B. R. Garcia, R. G. Garlito, L. S. G´omez, and E. G. Prieto, “Artificial intelligence in the sorting of municipal waste as an enabler of the circular economy,” Resources, vol. 10, no. 4, p. 28, 2021.
92) D. D. Cremer, What Does Building a Fair AI Really Entail?, Harvard Business Review, Maasachussets, MA, USA, 2020, https://hbr.org/2020/09/what-does-building-a-fair-ai-reallyentail.
-
کلمات کلیدی به فارسی :
الگوریتم یادگیری ماشین، الگوریتم، اختلال زنجیره تأمین، داده کاوی، پایداری.
-
چکیده مقاله به انگلیسی :
In today's complex and ever-changing world, concerns about not having enough data have been replaced by concerns about too much data for supply chain management (SCM). The volume of data generated from all parts of the supply chain has changed the nature of SCM analysis. As the volume of data increases, the efficiency and effectiveness of traditional methods have decreased. The limitations of these methods in analyzing and interpreting large volumes of data have prompted researchers to develop methods that have a high ability to analyze and interpret big data. The most well-known artificial intelligence (AI) techniques are discussed by developing a conceptual framework, the contribution of ML techniques in supplier selection and segmentation, supply chain risk prediction, and demand and sales estimation, manufacturing, inventory management, transportation and distribution, sustainable development (SD), and circular economy (CE) and limitations. Future research directions are given.
-
کلمات کلیدی به انگلیسی :
Machine learning algorithm, algorithm, supply chain disruption, data mining, sustainability.
- صفحات : 15-32
-
دانلود فایل
( 941.22 KB )